
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Bubble sort

© 2023 Arthur Hoskey. All
rights reserved.

Bubble Sort Overview

Bubble Sort
 Elementary sorting algorithm.

 The basic algorithm is to test adjacent elements
and swap them if they are out of order.

 Bubble sort is slow in comparison to most other
sorting algorithms.

© 2023 Arthur Hoskey. All
rights reserved.

Bubble Sort

 Sort the following list using bubble sort.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519710

Bubble Sort

 Bubble sort.

 Go through the array from beginning to end.

 Check adjacent pairs. If the elements in a pair
are out of order swap them.

 "Large" elements will bubble to the end of the
array on each pass through the array.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519710

Bubble Sort

 Pass 1

 Compare elements at index 0 and 1.

 These elements are out of order so swap.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519107

Bubble Sort

 Pass 1 (continued)

 Compare elements at index 1 and 2.

 These elements are in order so do NOT swap.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16519107

Bubble Sort

 Pass 1 (continued)

 Compare elements at index 2 and 3.

 These elements are out of order so swap.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

16195107

Bubble Sort

 Pass 1 (continued)

 Compare elements at index 3 and 4.

 These elements are out of order so swap.

 Pass 1 DONE. This is what the array looks like
after the first pass.

 Notice the high element is in its correct position.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19165107

Bubble Sort

 Pass 2

 Compare elements at index 0 and 1.

 No swap.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19165107

Bubble Sort

 Pass 2 (continued)

 Compare elements at index 1 and 2.

 Swap.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161057

Bubble Sort

 Pass 2 (continued)

 Compare elements at index 2 and 3.

 No swap.

 Pass 2 DONE. This is what the array looks like
after the second pass.

 Second highest element is in its correct position.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161057

Bubble Sort

 Pass 3

 Compare elements at index 0 and 1.

 Swap.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161075

Bubble Sort

 Pass 3 (continued)

 Compare elements at index 1 and 2.

 No swap.

 Pass 3 DONE. This is what the array looks like
after the third pass.

 Third highest element is in its correct position.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161075

Bubble Sort

 Pass 4

 Compare elements at index 0 and 1.

 No swap.

 This is what the array looks like after the fourth
pass.

 Pass 4 is DONE. The algorithm is finished.

© 2023 Arthur Hoskey. All
rights reserved.

List

 0 1 2 3 4

19161075

All Passes and Swaps

 All passes and swaps shown here…

© 2023 Arthur Hoskey. All
rights reserved.

Pass 1 10 7 19 5 16

7 10 19 5 16

7 10 19 5 16

7 10 5 19 16

7 10 5 16 19

Pass 2 7 10 5 16 19

7 5 10 16 19

7 5 10 16 19

Pass 3 7 10 5 16 19

7 5 10 16 19

Pass 4 5 7 10 16 19

Done 5 7 10 16 19

Bold – Elements being

compared.

Red – Swap was done

Blue – No swap

Green – Element in final

place

Bubble Sort

void bubbleSort(int[] list)

 Declare int temp, iteration, index

 for iteration = 1 to (list.length – 1)

 for index = 0 to (list.length – iteration – 1)

 if list[index] > list[index + 1]

 temp = list[index]

 list[index] = list[index + 1]

 list[index + 1] = temp

 endIf

 endFor

 endFor

© 2023 Arthur Hoskey. All
rights reserved.

Outer loop is for

the "passes"

Swap adjacent

elements in the array

that are out of order

This loop is one "pass"

Bubble Sort Analysis

 Now on to the analysis of bubble sort…

© 2023 Arthur Hoskey. All
rights reserved.

Sum of n Terms

 Let's add 10 Terms together!

10+9+8+7+6+5+4+3+2+1

 Pair the numbers up as follows:

10+9+8+7+6+5+4+3+2+1

 How many pairs? There are n numbers which means there are
n/2 pairs (5 in this case).

 What is the sum of each pair? n+1 is sum of pair (11 in
this case)

 Total = (number of pairs) * (sum of each pair)

 Total = (n/2) * (n+1)

 Total =
𝐧(𝐧+𝟏)

𝟐

© 2023 Arthur Hoskey. All
rights reserved.

There are 10 numbers (n=10).

There are 5 pairs (n/2 pairs).

Each pair adds up to 11.

5 * 11 = 55

We are summing to n. The numerator of

the formula requires that we multiply the

number we are summing by one plus that

number (n*(n+1)).

Sum of n Terms (Odd # of Terms)

 Summation with odd number of terms (STILL WORKS).

 5+4+3+2+1

 Pair the numbers up as follows:

 5+4+3+2+1

 How many pairs? There are n numbers which means there are
n/2 pairs (2 in this case).

 What is the sum of each pair? n+1 is sum of pair (6 in this
case)

 Total = (number of pairs) * (sum of each pair)

 Total = (n/2) * (n+1)

 Total =
𝐧(𝐧+𝟏)

𝟐

© 2023 Arthur Hoskey. All
rights reserved.

There are 5 numbers (n=5).

There are 2.5 pairs (n/2 pairs).

Each pair adds up to 6.

6 * 2.5 = 15

The 3 in the middle is half of

a pair.

Using the Sum Formula

𝐧(𝐧+𝟏)

𝟐

n = 6:
n(n+1)

2
 =

6(6+1)

2
 =

6(7)

2
 =

42

2
 = 21

n=10:
n(n+1)

2
 =

10(10+1)

2
 =

10(11)

2
 =

110

2
 = 55

n=(n-1):
n(n+1)

2
 =

(n−1)((n−1)+1)

2
 =

(n−1)n

2

© 2023 Arthur Hoskey. All
rights reserved.

Replace n with the ending number (6)

Replace n with the ending number (10)

Replace n with the ending number (n-1). Wherever you

see n replace it with n-1. This sums to one less than n.

Bubble Sort Analysis

 The number of comparisons done for each pass decreases
for each pass.

© 2023 Arthur Hoskey. All
rights reserved.

Start 10 7 19 5 16

Pass 1 7 10 19 5 16

7 10 19 5 16

7 10 5 19 16

7 10 5 16 19

Pass 2 7 10 5 16 19

7 5 10 16 19

7 5 10 16 19

Pass 3 7 10 5 16 19

7 5 10 16 19

Pass 4 5 7 10 16 19

Done 5 7 10 16 19

Pass 1 → 4 comparisons

Pass 2 → 3 comparisons

Pass 3 → 2 comparisons

Pass 4 → 1 comparison

Bubble Sort Analysis

 The collection in this example has 5 elements so n=5.

 Here are the comparisons for each pass in terms of n:
◦ Pass 1 → 4 comparisons is (n-1) comparisons

◦ Pass 2 → 3 comparisons is (n-2) comparisons

◦ Pass 3 → 2 comparisons is (n-3) comparisons

◦ Pass 4 → 1 comparison is (n-4) comparisons

 How many pairs? (n-1)/2

 What is the sum of each pair? (n-1)+1 = n

 Total = (number of pairs) * (sum of each pair)

 Total = ((n-1)/2) * (n)

 Total =
𝐧−𝟏 ∗𝐧

𝟐

 Total =
𝟓−𝟏 ∗𝟓

𝟐

 Total =
𝟒∗𝟓

𝟐

 Total = 10

© 2023 Arthur Hoskey. All
rights reserved.

WHY USE n(n-1) INSTEAD OF n(n+1) HERE?

We must sum up to n-1 (instead of n)

because n-1 is the number of comparisons

for pass 1. The numerator of the formula

requires that we multiply the number we are

summing to by one plus that number. In this

case we are summing to n-1 (not n). So, we

multiply (n-1)*n (n is one plus the number).

Bubble Sort – Big O

 There are
n(n−1)

2
 comparisons.

Simplify in terms of big O:

 f(n) =
n(n−1)

2

 =
(n2−n)

2

 =
n2

2
 -

n

2

 = n2 – n

 = n2

 f(n) ∈ O(n2)

© 2023 Arthur Hoskey. All
rights reserved.

Distribute n

Remove ½ constant from each term

Remove lower order terms

Distribute 1/2

Bubble Sort Analysis (Normal) –
No Optimizations

Bubble Sort (Normal)

 Runtimes for different cases of input data set.

 Average Data (randomized) is O(n2)

 Sorted Data is O(n2)

 The algorithm as described (no optimizations) will
always run the full nested loops so it will be O(n2) no
matter what the order of the input data.

 There is no best case of data that will speed up the plain
algorithm as described so far.

© 2023 Arthur Hoskey. All
rights reserved.

Bubble Sort Analysis (Normal) –
No Optimizations

 Runtimes for different cases of input data.

 Best case input data does not speed up runtimes
because the inner loop always runs all iterations.

© 2023 Arthur Hoskey. All
rights reserved.

Input Data Ω(𝑔 𝑛) 𝑂(𝑔 𝑛) Θ(𝑔 𝑛)

Average Case n2 n2 n2

Best Case (already
sorted low to high)

n2 n2 n2

Worst Case (sorted
high to low)

n2 n2 n2

Bubble Sort Optimization

Bubble Sort Optimization

 We can add an optimization to bubble sort to minimize the
number of passes that are done.

 We must keep track of whether or not a swap is done
during a pass. You can use a Boolean variable for this. For
example, set swapDone=true if a swap is performed.

 If swapDone is false then it can immediately stop both
loops, the collection is sorted (inner loop only runs once).

 Average Data (randomized) – O(n2)

 Sorted Data – O(n)

 If we use the optimization and the data is sorted,
then the best-case runtime is O(n). It only needs to
make one pass through the data.

© 2023 Arthur Hoskey. All
rights reserved.

Bubble Sort Analysis with
Optimization

 Runtimes with optimization for different cases of
input data.

 Best case input data speeds up runtime because
inner loop does not run.

© 2023 Arthur Hoskey. All
rights reserved.

Input Data Ω(𝑔 𝑛) 𝑂(𝑔 𝑛) Θ(𝑔 𝑛)

Average Case n2 n2 n2

Best Case
(already sorted
low to high)

n n n

Worst Case (sorted
high to low)

n2 n2 n2

End of Slides

 End of Slides

© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Today’s Lecture
	Slide 3: Bubble Sort Overview
	Slide 4: Bubble Sort
	Slide 5: Bubble Sort
	Slide 6: Bubble Sort
	Slide 7: Bubble Sort
	Slide 8: Bubble Sort
	Slide 9: Bubble Sort
	Slide 10: Bubble Sort
	Slide 11: Bubble Sort
	Slide 12: Bubble Sort
	Slide 13: Bubble Sort
	Slide 14: Bubble Sort
	Slide 15: Bubble Sort
	Slide 16: All Passes and Swaps
	Slide 17
	Slide 18: Bubble Sort Analysis
	Slide 19: Sum of n Terms
	Slide 20: Sum of n Terms (Odd # of Terms)
	Slide 21: Using the Sum Formula
	Slide 22: Bubble Sort Analysis
	Slide 23: Bubble Sort Analysis
	Slide 24: Bubble Sort – Big O
	Slide 25: Bubble Sort Analysis (Normal) – No Optimizations
	Slide 26: Bubble Sort Analysis (Normal) – No Optimizations
	Slide 27: Bubble Sort Optimization
	Slide 28: Bubble Sort Analysis with Optimization
	Slide 29: End of Slides

